



## **Off-line Filter Units**



## FNA 008 · FNA 016

- Operating pressure up to 4 bar
- Nominal flow rate up to 16 l/min
- For tank capacities up to 1500 l

### Description

#### Application

Off-line filtration in hydraulic and lubricating oil systems.

#### **Performance features**

Protection

against wear: By means of filter elements that meet even the highest demands regarding cleanliness classes and dirt-holding capacity.

Protection against

By means of permanent filtration in the off-line malfunction: circuits excellent cleanliness classes can be achieved. This can lead to significantly longer intervals between maintenance work and oil changes, as well as reduction of machine failures due to contamination.

#### Special design features

| Cover:           | The cover can be opened without special auxiliary tools.                                                                                                                                                                              |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | Because of the cover design the filter element can<br>be changed almost without losing any oil. No pipes<br>are needed except for the connection lines. The<br>power units feature minimal noise output and low<br>power consumption. |
| Pressure         |                                                                                                                                                                                                                                       |
| relief valve:    | An integrated PRV (pressure relief valve) protects against overload.                                                                                                                                                                  |
| Dirt             | -                                                                                                                                                                                                                                     |
| retention valve: | Ensures that dirt accumulated in the filter is removed<br>together with the element. Settled dirt cannot return<br>into the system.                                                                                                   |

#### Filter elements

Flow direction from centre to outside. The star-shaped pleating of the filter material results in:

- large filter surfaces
- low pressure drop
- high dirt-holding capacities
- long service life

#### **Filter maintenance**

By using a clogging indicator the correct moment for maintenance is stated and guarantees the optimum utilization of the filter life.

#### Materials

| Pump housing:   | Aluminium alloy                                             |
|-----------------|-------------------------------------------------------------|
| Filter housing: | Steel                                                       |
| Cover:          | Aluminium alloy                                             |
| Seals:          | NBR (Viton on request)                                      |
| Filter media:   | EXAPOR <sup>®</sup> - inorganic, multi-layer microfibre web |

#### Accessories

Water-absorbing filter elements (EXAPOR® AQUA) are available on request.

With Part No. FNA 008.1700 a mounting set that facilitates the fitting of incoming and outgoing pipes onto an existing filling/venting connection is available.

For installation in filter cooling circuits a version with by-pass valve is available on request.

Electrical and optical clogging indicators are available. Dimensions and technical data see catalogue sheet 60.20.

### Characteristics

#### Nominal flow rate

Up to 16 l/min at  $v = 35 \text{ mm}^2/\text{s}$ (see Selection Chart, column 2)

#### Connection

Threaded port according to ISO 228 or DIN 13. Sizes see Selection Chart, columns 9 and 10

#### **Filter fineness**

3 µm(c) ... 12 µm(c)  $\beta$ -values according to ISO 16889 (see Selection Chart, column 3 and Diagram Dx)

#### **Dirt-holding capacity**

Values in g test dust ISO MTD according to ISO 16889 (see Selection Chart, column 5)

#### **Hydraulic fluids**

Mineral oil and biodegradable fluids (HEES and HETG, see info-sheet 00.20)

#### Temperature range of fluids

0 °C ...+65 °C (also see viscosity range)

### Ambient temperature range

0 °C ...+50 °C

#### Viscosity range

| Electro motor<br>air cooled<br>type of protection: IP 55 | Continous<br>operation<br>min. | Continous<br>operation<br>max. | Short-term<br>operation<br>max. |
|----------------------------------------------------------|--------------------------------|--------------------------------|---------------------------------|
| 3 ~ 400 V / 460 V                                        | 15 mm²/s                       | 200 mm <sup>2</sup> /s         | 400 mm <sup>2</sup> /s          |
| 1 ~ 230 V                                                | 15 mm²/s                       | 200 mm <sup>2</sup> /s         | 400 mm <sup>2</sup> /s          |
| 1 ~ 110 V                                                | 15 mm²/s                       | 100 mm <sup>2</sup> /s         | 200 mm <sup>2</sup> /s          |
| 24 V                                                     | 15 mm²/s                       | 100 mm <sup>2</sup> /s         | 150 mm²/s                       |

Tank capacity

approx. 2,4 l

#### Maximum suction height

1,5 m

#### **Operating pressure**

Max. 4 bar, pressure protection with pressure relief valve; cracking pressure see Selection Chart, column 11

#### **Operating position**

Vertical, pump block at the bottom

### **Recommended tank capacities**

FNA 008: 100 | ... 800 | FNA 016: 400 | ... 1500 | Off-line filter units for tank capacities exceeding 1500 l see catalogue sheet 80.50

Selection Chart, columns 1-10

|              |       | /             |            | DX              |            | 0 <sup>e</sup> | og (max.)         | Imaxi            |              |
|--------------|-------|---------------|------------|-----------------|------------|----------------|-------------------|------------------|--------------|
|              |       | /             | ate see    | Diagn           | otingvolte | ingfreque      | Imaxil            | 1.2t50H21        | . /          |
| \$10:        |       | : nal flow    | fineness   | holding con     | opera      | oroperating    | or power .        | speed c action A | actionB      |
| Part Ne      | Ň     | Normine Filts | er In Dirt | E-MOL           | E-M        | to. E-mot      | Engine            | Conneinlet       | Connectutlet |
|              | l/min |               | g          | V               | Hz         | kW             | min <sup>-1</sup> |                  |              |
| 1            | 2     | 3             | 4          | 5               | 6          | 7              | 8                 | 9                | 10           |
| FNA 008-763  | 8     | 3 E-N         | 180        | 1 ~ 110 V       | (60)       | 0,25 (0,3)     | 1400 (1700)       | 1 1/16-12UN2B    | 3/4-16UN-2B  |
| FNA 008-163  | 8     | 5 E-N         | 180        | 1 ~ 110 V       | (60)       | 0,25 (0,3)     | 1400 (1700)       | 1 1/16-12UN2B    | 3/4-16UN-2B  |
|              |       |               |            |                 |            |                |                   |                  |              |
| FNA 008-573  | 8     | 3 E-N         | 180        | 1 ~ 230 V       | 50         | 0,25           | 1400 (1700)       | G 3/4            | G 1/2        |
|              |       |               |            |                 |            |                |                   |                  |              |
| FNA 008-553  | 8     | 3 E-N         | 180        | 3 ~ 400 V/460 V | 50 (60)    | 0,25 (0,3)     | 1400 (1700)       | G 3/4            | G 1/2        |
| FNA 008-753  | 8     | 3 E-N         | 180        | 3 ~ 400 V/460 V | 50 (60)    | 0,25 (0,3)     | 1400 (1700)       | 1 1/16-12UN2B    | 3/4-16UN-2B  |
| FNA 008-153  | 8     | 5 E-N         | 180        | 3 ~ 400 V/460 V | 50 (60)    | 0,25 (0,3)     | 1400 (1700)       | G 3/4            | G 1/2        |
| FNA 008-556  | 8     | 12 E          | 85         | 3 ~ 400 V/460 V | 50 (60)    | 0,25 (0,3)     | 1400 (1700)       | G 3/4            | G 1/2        |
|              |       |               |            |                 |            |                |                   |                  |              |
| FNA 016-763  | 16    | 3 E-N         | 160        | 1 ~ 110 V       | (60)       | (0,3)          | 2800 (3300)       | 1 1/16-12UN2B    | 3/4-16UN-2B  |
| FNA 016-163  | 16    | 5 E-N         | 160        | 1 ~ 110 V       | (60)       | (0,3)          | 2800 (3300)       | 1 1/16-12UN2B    | 3/4-16UN-2B  |
|              |       |               |            |                 |            |                |                   |                  |              |
| FNA 016-573  | 16    | 3 E-N         | 160        | 1 ~ 230 V       | 50         | 0,45           | 2700 (3200)       | G 3/4            | G 1/2        |
| FNA 016-173  | 16    | 5 E-N         | 160        | 1 ~ 230 V       | 50         | 0,45           | 2700 (3200)       | G 3/4            | G 1/2        |
|              |       |               |            |                 |            |                |                   |                  |              |
| FNA 016-553  | 16    | 3 E-N         | 160        | 3 ~ 400 V/460 V | 50 (60)    | 0,45 (0,55)    | 2700 (3200)       | G 3/4            | G 1/2        |
| FNA 016-753  | 16    | 3 E-N         | 160        | 3 ~ 400 V/460 V | 50 (60)    | 0,45 (0,55)    | 2700 (3200)       | 1 1/16-12UN2B    | 3/4-16UN-2B  |
| FNA 016-153  | 16    | 5 E-N         | 160        | 3 ~ 400 V/460 V | 50 (60)    | 0,45 (0,55)    | 2700 (3200)       | G 3/4            | G 1/2        |
| FNA 016-773  | 16    | 5 E-N         | 160        | 3 ~ 400 V/460 V | 50 (60)    | 0,45 (0,55)    | 2700 (3200)       | 1 1/16-12UN2B    | 3/4-16UN-2B  |
|              |       |               |            |                 |            |                |                   |                  |              |
| FNA 016-6553 | 16    | 3 E-N         | 160        | 24 V DC         | -          | 0,25           | 2820              | G 3/4            | G 1/2        |
| FNA 016-193  | 16    | 5 E-N         | 160        | 24 V DC         | -          | 0,25           | 2820              | G 3/4            | G 1/2        |

### Diagrams

#### Filter fineness curves in Selection Chart, column 3



The abbreviations represent the following  $\beta$ -values resp. finenesses:

#### For EXAPOR®-elements:

| 3 E-N | = | $\overline{\beta}_{3(c)}$  | = 200 | <b>EXAPOR</b> ® |
|-------|---|----------------------------|-------|-----------------|
| 5 E-N | = | $\bar{\beta}_{5(c)}$       | = 200 | <b>EXAPOR</b> ® |
| 12 E  | = | $\overline{\beta}_{12}(c)$ | = 200 | <b>EXAPOR</b> ® |

For special applications, finenesses differing from these curves are also available by using special composed filter media.

### Selection Chart, columns 11-17

|              |          | /       |          | /        | / /             | / /       |                      |
|--------------|----------|---------|----------|----------|-----------------|-----------|----------------------|
|              |          |         |          | 0255     |                 | ent       |                      |
| /            |          |         | ofby     | ×/       | TUDE NO.        | or eleme. |                      |
|              |          | ores    | sure     | aulic    | inc sents in or | t filter  | indicato             |
| + NO.        |          | King Pr | abols hy | obols en | asureme         | No.       | 9 <sup>m</sup> marks |
| Part         | <u> </u> | at SY   | SY SY    | M. W     | Rep. bare       | C10.91    | Rei                  |
|              | bar      |         |          |          |                 |           |                      |
|              | 11       | 12      | 13       | 14       | 15              | 16        | 17                   |
| FNA 008-763  | 4        | 1       | 3        | 2        | V7.1220-113     | optional  |                      |
| FNA 008-163  | 4        | 1       | 3        | 2        | V7.1220-13      | optional  |                      |
|              |          |         |          |          |                 |           |                      |
| FNA 008-573  | 4        | 1       | 3        | 1        | V7.1220-113     | optional  |                      |
|              |          |         |          |          |                 |           |                      |
| FNA 008-553  | 4        | 1       | 1, 2     | 1        | V7.1220-113     | optional  |                      |
| FNA 008-753  | 4        | 1       | 1, 2     | 2        | V7.1220-113     | optional  |                      |
| FNA 008-153  | 4        | 1       | 1, 2     | 1        | V7.1220-13      | optional  |                      |
| FNA 008-556  | 4        | 1       | 1, 2     | 1        | V7.1220-06      | optional  |                      |
|              |          |         |          |          |                 |           |                      |
| FNA 016-763  | 4        | 1       | 3        | 2        | V7.1220-113     | optional  |                      |
| FNA 016-163  | 4        | 1       | 3        | 2        | V7.1220-13      | optional  |                      |
|              |          |         |          |          |                 |           |                      |
| FNA 016-573  | 4        | 1       | 3        | 1        | V7.1220-113     | optional  |                      |
| FNA 016-173  | 4        | 1       | 3        | 1        | V7.1220-13      | optional  |                      |
|              |          |         |          |          |                 |           |                      |
| FNA 016-553  | 4        | 1       | 1, 2     | 1        | V7.1220-113     | optional  |                      |
| FNA 016-753  | 4        | 1       | 1, 2     | 2        | V7.1220-113     | optional  |                      |
| FNA 016-153  | 4        | 1       | 1, 2     | 1        | V7.1220-13      | optional  |                      |
| FNA 016-773  | 4        | 1       | 1, 2     | 2        | V7.1220-13      | optional  |                      |
|              |          |         |          |          |                 |           |                      |
| FNA 016-6553 | 4        | 1       | 4        | 3        | V7.1220-113     | optional  |                      |
| FNA 016-193  | 4        | 1       | 4        | 3        | V7.1220-13      | optional  |                      |
|              |          |         |          |          |                 |           |                      |
|              |          |         |          |          |                 |           |                      |
|              |          |         |          |          |                 |           |                      |
|              |          |         |          |          |                 |           |                      |
|              |          |         |          |          |                 |           |                      |
|              |          |         |          |          |                 |           |                      |

All filter units are delivered with an unplugged clogging indicator connection M12 x 1,5. As clogging indicators either manometers or electrical pressure switches can be used.

#### For the appropriate clogging indicators see catalogue sheet 60.20.

By the use of a manometer version DG 200-16\* has to be chosen.

#### **Remarks:**

- If operating frequency increases, pump delivery will increase as well.
- The filter units listed in this chart are standard units. If modifications are required, e.g. with water-absorbing filter elements, pipe extensions or mounting sets, we kindly ask for your request.
- The clogging indicators are optionally available and then will be loosely provided.

#### \* Manometer without throttle screw

### Dimensions



### Measurements

| Type <sup>*</sup> | A             | В           | С  | D  | E   | F   | G   | Н   | I   | J  | K  | L   | М  | Ν   | 0   | Р   | R    | S  | Т   | U    | V   |
|-------------------|---------------|-------------|----|----|-----|-----|-----|-----|-----|----|----|-----|----|-----|-----|-----|------|----|-----|------|-----|
|                   |               |             |    |    |     |     |     |     |     |    |    |     |    |     |     |     |      |    |     | min. |     |
| 1                 | G3/4          | G1/2        | 33 | 30 | 510 | 340 | 230 | 100 | 125 | M6 | 80 | 100 | 25 | 63  | 105 | 140 | 38,5 | 27 | 100 | 20   | 128 |
| 2                 | 1 1/16-12UN2B | 3/4-16UN-2B | 33 | 30 | 510 | 340 | 230 | 100 | 125 | M6 | 80 | 100 | 25 | 63  | 105 | 140 | 38,5 | 27 | 100 | 20   | 128 |
| 3                 | G3/4          | G1/2        | 33 | 30 | 550 | 340 | 265 | 100 | 125 | M6 | 80 | 100 | 25 | 105 | 145 | 140 | 38,5 | 27 | 100 | 20   | 128 |

\* Type see Selection Chart, column 14

### Symbols

#### Hydraulic:





Electric:





2



| φ.       | <u>ф</u> . | <u>ф</u>                                 |
|----------|------------|------------------------------------------|
| Ψ-       | Ψ,         | $\nabla$                                 |
| $\oplus$ | ф<br>      | •                                        |
|          | ⊕-<br>⊕    | <ul> <li>⊕ - ⊕ +</li> <li>⊕ ⊕</li> </ul> |

4

### **Quality Assurance**

#### Quality management according to DIN EN ISO 9001

To ensure constant quality in production and operation, ARGO-HYTOS filter elements undergo strict controls and tests according to the following DIN and ISO standards:

| DIN ISO 2941 | Verification of collapse/burst resistance          |
|--------------|----------------------------------------------------|
| DIN ISO 2943 | Verification of material compatibility with fluids |
| DIN ISO 3724 | Verification of flow fatigue characteristics       |

| 150 | 2942  |
|-----|-------|
| ISO | 3968  |
| ISO | 16889 |
|     |       |

-- -- --

Verification of fabrication integrity (Bubble Point Test) Evaluation of pressure drop versus flow characteristics Multi-Pass-Test (evaluation of filter fineness and dirt-holding capacity)

Various quality controls during the production process guarantee the leakfree function and solidity of our filters.

Our engineers will be glad to advice you in questions concerning filter application, selection as well as the cleanliness class of the filtered medium attainable under practical operating conditions.

Illustrations may sometimes differ from the original. ARGO-HYTOS is not responsible for any unintentional mistake in this specification sheet.







## Off-line Filter Units



## FNA 045

- Operating pressure up to 4 bar
- Nominal flow rate up to 45 l/min
- For tank capacities up to 5000 l

### Description

#### Application

In the off-line circuits of hydraulic and lubricating oil systems.

| Performance fea    | tures                                                                                                                                                                                                                                                                                          |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Protection         |                                                                                                                                                                                                                                                                                                |
| against wear:      | By means of filter elements that, meet even the highest demands regarding cleanliness classes and dirt-holding capacity.                                                                                                                                                                       |
| Protection against |                                                                                                                                                                                                                                                                                                |
| malfunction:       | By means of permanent filtration in the off-line<br>circuits excellent cleanliness classes can be achieved.<br>This can lead to significantly longer intervals between<br>maintenance work and oil changes, as well as<br>reducing machine failure due to contamination.                       |
| Special design for | eatures                                                                                                                                                                                                                                                                                        |
| Cover:             | The fold-out handles at the cover facilitate opening.<br>Because of the cover design the filter element can<br>be changed almost without losing any oil.<br>No pipes are needed except for the connection lines.<br>The power units feature minimal noise output and<br>low power consumption. |
| Pressure           |                                                                                                                                                                                                                                                                                                |
| relief valve:      | An integrated PRV (pressure relief valve) protects against overload.                                                                                                                                                                                                                           |
| Dirt               |                                                                                                                                                                                                                                                                                                |
| retention valve:   | Ensures that dirt accumulated in the filter is<br>removed together with the element.<br>Settled dirt cannot return into the system.                                                                                                                                                            |

#### **Filter elements**

Flow direction from centre to outside. The star-shaped pleating of the filter material results in:

- large filter surfaces
- low pressure drop
- high dirt-holding capacities
- long service life

#### **Filter maintenance**

By using a clogging indicator the correct moment for maintenance is stated and guarantees the optimum utilization of the filter life.

#### Materials

| Aluminium alloy                                             |
|-------------------------------------------------------------|
| Aluminium alloy                                             |
| NBR (Viton on request)                                      |
| EXAPOR <sup>®</sup> - inorganic, multi-layer microfibre web |
|                                                             |

#### Accessories

Water-absorbing filter elements (EXAPOR® AQUA) are available on request.

Electrical and optical clogging indicators are available on request optionally with one or two switching points resp. temperature suppression. Dimensions and technical data see catalogue sheet 60.30.

### Characteristics

#### Nominal flow rate

Up to 45 l/min at v = 35 mm<sup>2</sup>/s (see Selection Chart, column 2)

#### Connection

Threaded port according to ISO 228. Sizes see Selection Chart, columns 9 and 10

#### **Filter fineness**

3 µm(c) ... 5 µm(c) β-values according to ISO 16889 (see Selection Chart, column 3 and diagram Dx)

#### **Dirt-holding capacity**

#### Values in g test dust ISO MTD according to ISO 16889 (see Selection Chart, column 5)

#### Hydraulic fluids

Mineral oil and biodegradable fluids (HEES and HETG, see info-sheet 00.20)

#### Temperature range of fluids

0 °C ...+65 °C (also see viscosity range)

### Ambient temperature range

0 °C ...+50 °C

#### Viscosity range

| Electro motor<br>air cooled<br>type of protection: IP 55 | Continuous<br>operation<br>min. | Continuous<br>operation<br>max. | Short-term<br>operation<br>max. |  |  |  |  |
|----------------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|--|--|--|--|
| 3 ~ 400 V / 460 V                                        | 15 mm²/s                        | 600 mm²/s*                      | 800 mm²/s*                      |  |  |  |  |
| 1 ~ 230 V                                                | 15 mm²/s                        | 600 mm²/s*                      | 800 mm²/s*                      |  |  |  |  |

\* If the filter unit is operated together with the ARGO-HYTOS oil particle counter PODS, maximum viscosity in the "PODS" position is 400 mm<sup>2</sup>/s.

#### Tank capacity

approx. 10 l

#### Maximum suction height

1,5 m

#### **Operating pressure**

Max. 4 bar, pressure protection with pressure relief valve; cracking pressure see Selection Chart, column 11

#### **Operating position**

Vertical, pump block at the bottom

#### **Recommended tank capacities**

From 500 | ... 5000 | Off-line filter units for smaller tank capacities see catalogue sheet 80.40.

### Diagrams

#### Filter fineness curves in Selection Chart, column 3



The abbreviations represent the following  $\beta\mbox{-values}$  resp. finenesses:

#### For EXAPOR®-elements:

| 3 E-N | = | $\overline{\beta}_{3(c)}$  | = 200 | <b>EXAPOR</b> ® |
|-------|---|----------------------------|-------|-----------------|
| 5 E-N | = | $\bar{\beta}_{5(c)}$       | = 200 | <b>EXAPOR</b> ® |
| 12 E  | = | $\overline{\beta}_{12}(c)$ | = 200 | <b>EXAPOR</b> ® |

For special applications, finenesses differing from these curves are also available by using special composed filter material.

### Selection Chart

|                                                                  |                                |                                        |                                  |                                                             |                                        | /                           |                                 |                              | (max.)                                 |                                     | /                            |                                    |                                                     | ///                                          |
|------------------------------------------------------------------|--------------------------------|----------------------------------------|----------------------------------|-------------------------------------------------------------|----------------------------------------|-----------------------------|---------------------------------|------------------------------|----------------------------------------|-------------------------------------|------------------------------|------------------------------------|-----------------------------------------------------|----------------------------------------------|
|                                                                  |                                |                                        |                                  | Diagr. DX                                                   | - VC                                   | utage                       | 1                               | equency                      |                                        | 0HZ                                 |                              | Jot                                | of by pass                                          | element                                      |
|                                                                  |                                | 1 410                                  | UN Tate                          | s see 1 capacity                                            | operating.                             |                             | erating                         | ower                         | ed at                                  | 20 AIN                              | let BO                       | utless                             | the originic spectric                               | entfilterc                                   |
| part NO.                                                         |                                | Nominal I                              | terfinen                         | t-holding E-motor                                           | 01<br>E.1                              | notor                       | motor                           | nginesp                      | onnect                                 | onnec                               | 10. Kin                      | J Phol                             | symbols ei parenti                                  | t No. (1099indicator                         |
|                                                                  | l/min                          |                                        |                                  | V                                                           | ∠                                      | kw/                         | min <sup>-1</sup>               |                              |                                        | har                                 |                              | ,,,                                | J] (* (*                                            |                                              |
| 1                                                                | 2                              | 3                                      | 4                                | 5                                                           | 6                                      | 7                           | 8                               | 9                            | 10                                     | 11                                  | 12                           | 13                                 | 14                                                  | 15                                           |
| FNA 045-1553                                                     | 45                             | 3 E-N                                  | 840                              | 1 ~ 230 V                                                   | 50 (60)                                | 1,1                         | 1500                            | G1¼                          | G1                                     | 4                                   | 1                            | 3                                  | V7.1560-103                                         | optional                                     |
|                                                                  | 45                             |                                        | 0.40                             | 4 22014                                                     | F0 (C0)                                |                             | 4500                            | 641/                         | 64                                     |                                     | 4                            |                                    | 17 45 60 00                                         |                                              |
| FNA 045-1153                                                     | 45                             | 5 E-IN                                 | 840                              | 1 ~ 230 V                                                   | 50 (60)                                | 1,1                         | 1500                            | G I 1/4                      | GI                                     | 4                                   | 1                            | 3                                  | V7.1560-03                                          | optional                                     |
|                                                                  |                                |                                        |                                  |                                                             |                                        |                             |                                 |                              |                                        |                                     |                              |                                    |                                                     |                                              |
|                                                                  |                                |                                        |                                  |                                                             |                                        |                             |                                 |                              |                                        |                                     |                              |                                    |                                                     |                                              |
| FNA 045-4553                                                     | 45                             | 3 E-N                                  | 840                              | 3 ~ 400 V/460 V                                             | 50 (60)                                | 1,1                         | 1500                            | G1¼                          | G1                                     | 4                                   | 1                            | 1, 2                               | V7.1560-103                                         | optional                                     |
| FNA 045-4153                                                     | 45                             | 5 E-N                                  | 840                              | 3 ~ 400 V/460 V                                             | 50 (60)                                | 1,1                         | 1500                            | G1¼                          | G1                                     | 4                                   | 1                            | 1, 2                               | V7.1560-03                                          | optional                                     |
|                                                                  |                                |                                        |                                  |                                                             |                                        |                             |                                 |                              |                                        |                                     |                              | -                                  |                                                     |                                              |
|                                                                  |                                |                                        |                                  |                                                             |                                        |                             |                                 |                              |                                        |                                     |                              |                                    |                                                     |                                              |
|                                                                  |                                |                                        |                                  |                                                             |                                        |                             |                                 |                              |                                        |                                     |                              |                                    |                                                     |                                              |
|                                                                  |                                |                                        |                                  |                                                             |                                        |                             |                                 |                              |                                        |                                     |                              |                                    |                                                     |                                              |
|                                                                  |                                |                                        |                                  |                                                             |                                        |                             |                                 |                              |                                        |                                     |                              |                                    |                                                     |                                              |
|                                                                  |                                |                                        |                                  |                                                             |                                        |                             |                                 |                              |                                        |                                     |                              |                                    |                                                     |                                              |
|                                                                  |                                |                                        |                                  |                                                             |                                        |                             |                                 |                              |                                        |                                     |                              |                                    |                                                     |                                              |
|                                                                  |                                |                                        |                                  |                                                             |                                        |                             |                                 |                              |                                        |                                     |                              |                                    |                                                     |                                              |
|                                                                  |                                |                                        |                                  |                                                             |                                        |                             |                                 |                              |                                        |                                     |                              |                                    |                                                     |                                              |
|                                                                  |                                |                                        |                                  |                                                             |                                        |                             |                                 |                              |                                        |                                     |                              |                                    |                                                     |                                              |
|                                                                  |                                |                                        |                                  |                                                             |                                        |                             |                                 |                              |                                        |                                     |                              |                                    |                                                     |                                              |
|                                                                  |                                |                                        |                                  |                                                             |                                        |                             |                                 |                              |                                        |                                     |                              |                                    |                                                     |                                              |
|                                                                  |                                |                                        |                                  |                                                             |                                        |                             |                                 |                              |                                        |                                     |                              |                                    |                                                     |                                              |
| Optical or electric<br>filter head use th<br>Order example       | cal indi<br>ie abbro<br>e: The | cators are<br>eviation '<br>e filter F | e availab<br>'M" behi<br>NA 045- | le to monitor the cl<br>nd the part numbe<br>1553 has to be | ogging col<br>r of the ind<br>supplied | ndition<br>dicator.<br>with | of the e<br>The prin<br>optical | element<br>nted or<br>cloggi | t. If the<br>der acl<br>i <b>ng in</b> | e indica<br>knowle<br><b>dicato</b> | ator sh<br>edgeme<br>or - re | ould b<br>ents sl<br><b>spon</b> s | e already moun<br>now both items<br>se pressure 2,6 | ted onto the<br>separately.<br><b>) bar.</b> |
| Order example                                                    | :                              |                                        |                                  | FN C                                                        | 45-1553                                | 1                           | DG                              | 042-0                        | 1                                      | М                                   |                              |                                    |                                                     |                                              |
| Part No. (Basic                                                  | unit)                          |                                        |                                  |                                                             |                                        |                             |                                 |                              |                                        |                                     |                              |                                    | — mounted                                           |                                              |
| Clogging indic                                                   | ator                           |                                        |                                  |                                                             |                                        |                             |                                 |                              |                                        |                                     |                              |                                    |                                                     |                                              |
| crogging mult                                                    |                                | _                                      |                                  |                                                             |                                        |                             |                                 |                              |                                        |                                     |                              |                                    |                                                     |                                              |
| For the approp                                                   | oriate                         | clogging                               | g indicat                        | tors see catalogu                                           | e sheet 6                              | 50.30.                      |                                 |                              |                                        |                                     |                              |                                    |                                                     |                                              |
| Remarks:<br>• If operating frr<br>• The filter units<br>request. | equenc<br>i listed             | y increase<br>in this ch               | es, pump<br>art are st           | delivery will increa<br>andard units. If mo                 | se as well.<br>difications             | are re                      | quired, d                       | e.g. wit                     | h wate                                 | er-abso                             | rbing t                      | filter e                           | lements, we kin                                     | dly ask for your                             |
|                                                                  |                                |                                        |                                  |                                                             |                                        |                             |                                 |                              |                                        |                                     |                              |                                    |                                                     |                                              |

### Dimensions



### Measurements

| Туре    | Α   | В   | C    | D    | E   | F       | G  | H       | I  | J     | К   | L   | М      | N     | 0       |
|---------|-----|-----|------|------|-----|---------|----|---------|----|-------|-----|-----|--------|-------|---------|
| FNA 045 | G1¼ | G 1 | 735  | 312  | 176 | 63      | 10 | 30      | 87 | 395+2 | 175 | 130 | 79±0,3 | 186+2 | 154±0,3 |
|         | Р   | Q   | I    | 3    | 2   | S       |    | Т       |    | U     |     | W   |        |       |         |
| FNA 045 | 150 | 11  | 367: | ±0,3 | 164 | 164±0,3 |    | 215±0,3 |    | 241+2 |     | 160 |        |       |         |

### Symbols

Hydraulic:



Electric: 1





2



| Connectio | ns       |          |          |
|-----------|----------|----------|----------|
| <b>+</b>  | <b>-</b> | <b>+</b> | $\oplus$ |
| F         | 2        | L        | _        |
| \$        | $\oplus$ | $\oplus$ | $\oplus$ |
|           |          |          |          |

4

#### Direct current

### Quality Assurance

#### Quality management according to DIN EN ISO 9001

To ensure constant quality in production and operation, ARGO-HYTOS filter elements undergo strict controls and tests according to the following DIN and ISO standards:

| DIN ISO 2941 | Verification of collapse/burst resistance          |
|--------------|----------------------------------------------------|
| DIN ISO 2943 | Verification of material compatibility with fluids |
| DIN ISO 3724 | Verification of flow fatigue characteristics       |

| ISO | 2942  |
|-----|-------|
| ISO | 3968  |
| ISO | 16889 |

Verification of fabrication integrity (Bubble Point Test) Evaluation of pressure drop versus flow characteristics Multi-Pass-Test (evaluation of filter fineness and dirt-holding capacity)

Various quality controls during the production process guarantee the leakfree function and solidity of our filters.

Our engineers will be glad to advice you in questions concerning filter application, selection as well as the cleanliness class of the filtered medium attainable under practical operating conditions.

Illustrations may sometimes differ from the original. ARGO-HYTOS is not responsible for any unintentional mistake in this specification sheet.







**Off-line Filters** 



## **FNS 060**

- With flow control valve
- Operating pressure up to 320 bar
- Nominal flow rate up to 4 l/min

### Description

#### Application

In the high pressure circuits of hydraulic and lubricating oil systems.

#### **Performance features**

| Protection         |                                                                                                                                                                                                                                         |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| against wear:      | By means of ultra-fine filter elements that meet even<br>the highest demands regarding cleanliness classes and<br>dirt-holding capacity.                                                                                                |
| Protection against |                                                                                                                                                                                                                                         |
| malfunction:       | By means of permanent filtration in the off-line circuits excellent cleanliness classes can be achieved.                                                                                                                                |
| Special design fe  | eatures                                                                                                                                                                                                                                 |
| Cover:             | The cover can be opened without special auxiliary tools.<br>Because of the cover design the filter element can be<br>changed almost without losing any oil.<br>From the high-pressure circuit is cleaned by the fine<br>filter element. |
| Dirt               |                                                                                                                                                                                                                                         |
| retention valve:   | Ensures that dirt accumulated in the filter is removed<br>together with the element. Settled dirt cannot return<br>into the system.                                                                                                     |

#### **Filter elements**

Flow direction from centre to outside. The star-shaped pleating of the filter material results in:

- large filter surfaces
- low pressure drop
- high dirt-holding capacities
- long service life

#### **Filter maintenance**

By using a clogging indicator the correct moment for maintenance is stated and guarantees the optimum utilization of the filter life.

#### Materials

| Filter head:    | Aluminium alloy                                             |
|-----------------|-------------------------------------------------------------|
| Filter housing: | Steel                                                       |
| Cover:          | Aluminium alloy                                             |
| Seals:          | NBR (Viton on request)                                      |
| Filter media:   | EXAPOR <sup>®</sup> - inorganic, multi-layer microfibre web |

#### Accessories

Water-absorbing filter elements (EXAPOR® AQUA) are available on request. Electrical and optical clogging indicators are available on request. Dimensions and technical data see catalogue sheet 60.20.

### Characteristics

#### Nominal flow rate

Up to 4 l/min (see Selection Chart, column 2) Refers to the medium flow rate of the flow control valve. With selection of the flow control valve a sufficient surplus volume from the high-pressure circuit has to be guaranteed. If necessary the machine manufacturer should be consulted.

#### Connection

Threaded port according to ISO 228 or DIN 13. Sizes see Selection Chart, column 6 (other port threads on request)

#### **Filter fineness**

3 µm(c)  $\beta$ -values according to ISO 16889 (see Selection Chart, column 4 and diagram Dx)

#### **Dirt-holding capacity**

Values in g test dust ISO MTD according to ISO 16889 (see Selection Chart, column 5)

#### **Hydraulic fluids**

Mineral oil and biodegradable fluids (HEES and HETG, see info-sheet 00.20)

#### **Temperature range**

- 30 °C ... + 100 °C (temporary - 40 °C ... + 120 °C)

#### Viscosity at nominal flow rate

- at operating temperature:  $v < 35 \text{ mm}^2/\text{s}$  $\nu_{\text{max}} = 1200 \text{ mm}^2\text{/s}$
- as starting viscosity:

#### **Operating pressure**

Max. 320 bar (max. 5 bar without flow control valve) Minimum inlet pressure at the flow control valve: 10 bar

#### Mounting position

Vertical, connection port at the bottom

### Diagrams

#### $\Delta p$ -curves for complete filters in Selection Chart, column 3



#### Filter fineness curves in Selection Chart, column 4



The abbreviations represent the following  $\beta\mbox{-values}$  resp. finenesses:

#### For EXAPOR®-elements:

| 3 E-N = | $\overline{\beta}_{3(c)}$                       | = 200 | EXAPOR® |
|---------|-------------------------------------------------|-------|---------|
| 5 E-N = | $\overline{\beta}_{5(c)}^{(c)}$                 | = 200 | EXAPOR® |
| 12 E =  | $\overline{\boldsymbol{\beta}}_{12 (c)}^{J(c)}$ | = 200 | EXAPOR® |

For special applications, finenesses differing from these curves are also available by using special composed filter material.

### Selection Chart

|              |         |               |             |             | D¥               |       |         |                 | \$      | nt             |             |            |
|--------------|---------|---------------|-------------|-------------|------------------|-------|---------|-----------------|---------|----------------|-------------|------------|
| /            |         |               | ste se      | 10 no.      | Diagr.           | N/    | _       | ve of by pe     |         | element        | -01         | we         |
|              |         | of flow I     | a drop of   | curve       | 55 Set Hing Cape | tionA | JB      | Pressure ame    | ntfille |                | a indicato. | ontrolvalu |
| Part N       | J.      | ominar pressu | diagran Fil | ler fini Di | Int-hole Count   | ect.  | racking | Symbol Reblace. | t NO.   | Neight Cloggin | Flow        | CO. Remain |
|              | l/min   |               |             | g           |                  | bar   |         |                 | kg      |                |             |            |
| 1            | 2       | 3             | 4           | 5           | 6                | 7     | 8       | 9               | 10      | 11             | 12          | 13         |
| FNS 060-163  | *       | D1/*          | 3 E-N       | 270         | G¼ / G¼          | 3,5   | 1       | V7.1230-153     | 5,2     | optional       | optional    | basic unit |
|              |         |               |             |             |                  |       |         |                 |         |                |             |            |
|              |         |               |             |             |                  |       |         |                 |         |                |             |            |
|              |         |               |             |             |                  |       |         |                 |         |                |             |            |
| Flow control | valve - | - inlet pre   | ssure mi    | n. 10 b     | ar, max. 320     | bar:  |         |                 |         |                |             |            |
| HY 520-0051  | 1       | <b>D1</b> /1  |             |             | G¾ / G¼          |       |         |                 |         |                |             | -          |
|              | 2       | <b>D1</b> /2  |             |             | C3/. / C1/.      |       |         |                 |         |                |             |            |
| HT 520-0055  | Z       | DI/Z          |             |             | G74 / G74        |       |         |                 |         |                |             | _          |
| HY 520-0054  | 4       | <b>D1</b> /3  |             |             | G¾ / G¼          |       |         |                 |         |                |             | -          |
|              |         |               |             |             |                  |       |         |                 |         |                |             |            |
|              |         |               |             |             |                  |       |         |                 |         |                |             |            |
|              |         |               |             |             |                  |       |         |                 |         |                |             |            |
|              |         |               |             |             |                  |       |         |                 |         |                |             |            |
|              |         |               |             |             |                  |       |         |                 |         |                |             |            |
|              |         |               |             |             |                  |       |         |                 |         |                |             |            |
|              |         |               |             |             |                  |       |         |                 |         |                |             |            |
|              |         |               |             |             |                  |       |         |                 |         |                |             |            |
|              |         |               |             |             |                  |       |         |                 |         |                |             |            |
|              |         |               |             |             |                  |       |         |                 |         |                |             |            |
|              |         |               |             |             |                  |       |         |                 |         |                |             |            |
|              |         |               |             |             |                  |       |         |                 |         |                |             |            |
|              |         |               |             |             |                  |       |         |                 |         |                |             |            |

The housing of the off-line filter is designed for a max. operating pressure of 5 bar. To avoid back pressures no components as e.g. ball valves can be inserted at the housing outlet and in the continuative circuit.

Optical or electrical indicators are available to monitor the clogging condition of the element.

For the appropriate clogging indicators see catalogue sheet 60.20.

#### Remarks:

- The response/switching pressure of the clogging indicator used must be lower than the cracking pressure of the by-pass valve (see Selection Chart, column 7).
- The clogging indicators and flow control valves are optional and always delivered detached from the filter.
- The filter unitss listed in this chart are standard units. If modifications are required, e. g. with water-absorbing filter elements, we kindly ask for your request.

### Dimensions



| Measurement |       |     |     |     |    |    |     |     |    |     |      |    |    |    |     |    |     |   |     |
|-------------|-------|-----|-----|-----|----|----|-----|-----|----|-----|------|----|----|----|-----|----|-----|---|-----|
| Туре        | A / B | С   | D   | E   | F  | G  | Н   | I   | К  | L   | М    | N  | 0  | Р  | R   | S  | т   | U | V   |
| FNS 060     | G¼    | 410 | 136 | 233 | 95 | 12 | 170 | 169 | 73 | 9,5 | 56,5 | 67 | 23 | G¾ | 300 | 66 | 124 | 9 | 128 |

### Symbols



P



2

3

| Pos. | Designation        | Part No.            |
|------|--------------------|---------------------|
| 1    | Cover              | FNA 008.1250        |
| 2    | O-ring             | N007.1175           |
| 3    | Filter element     | see Selection Chart |
| 4    | Flow control valve | see Selection Chart |

The functions of the complete filters as well as the outstanding features of the filter elements assured by ARGO-HYTOS can only be guaranteed if original ARGO-HYTOS spare parts are used.

### **Quality Assurance**

#### Quality management according to DIN EN ISO 9001

To ensure constant quality in production and operation, ARGO-HYTOS filter elements undergo strict controls and tests according to the following DIN and ISO standards:

| DIN ISO 2941 | Verification of collapse/burst resistance          |
|--------------|----------------------------------------------------|
| DIN ISO 2943 | Verification of material compatibility with fluids |
| DIN ISO 3724 | Verification of flow fatigue characteristics       |

| ISO | 2942  |
|-----|-------|
| ISO | 3968  |
| ISO | 16889 |

Verification of fabrication integrity (Bubble Point Test) Evaluation of pressure drop versus flow characteristics Multi-Pass-Test (evaluation of filter fineness and dirt-holding capacity)

Various quality controls during the production process guarantee the leakfree function and solidity of our filters.

Our engineers will be glad to advice you in questions concerning filter application, selection as well as the cleanliness class of the filtered medium attainable under practical operating conditions.

Illustrations may sometimes differ from the original. ARGO-HYTOS is not responsible for any unintentional mistake in this specification sheet.







## **Off-line Filter**



## FN 060 · FN 300

- In-line mounting
- Operating pressure up to 12 bar
- Nominal flow rate up to 370 l/min

### Description

#### Application

Main flow filter or off-line filter in hydraulic and lubricating systems.

#### Performance features

| Protection         |                                                                                                                                                                                                                         |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| against wear:      | By means of filter elements that in full-flow<br>filtration, meet even the highest demands regarding<br>cleanliness classes.                                                                                            |
| Protection against |                                                                                                                                                                                                                         |
| malfunction:       | Through installation near to the control valves or other expensive components. The specific determined flow rate guarantees a closed by-pass valve even at $\nu \leq 200 \text{ mm}^2/\text{s}$ (cold start condition). |
| Special design for | eatures                                                                                                                                                                                                                 |
| Cover:             | The cover of the FN 060 can be opened without special auxiliary tools. Fold-out handle parts at the cover of the FN 300 for easy opening.                                                                               |

Automatic ventilation valve

| ventilation valve |                                                                                                                   |
|-------------------|-------------------------------------------------------------------------------------------------------------------|
| (only FN 300):    | The quick automatic deareation after putting into                                                                 |
|                   | operation prevents components from consequential                                                                  |
|                   | damage by a too high air amount in the oil as e.g. pre-<br>vention of cavitation damages and micro diesel effect. |
| Dirt retention    |                                                                                                                   |
| valve:            | On the bottom of the from inside to outside flown                                                                 |

through filter elements, there is a dirt retention valve. If the filter element is pulled out of the filter housing with the cover the dirt retention valve will close. Sedimented dirt is removed from the housing with the filter element. Because of the design of the cover the filter element can be changed almost without loosing any oil.

### Characteristics

#### **Operating pressure**

Max. 12 bar (FN 060) Max. 10 bar (FN 300)

#### Nominal flow rate

Up to 370 l/min (see Selection Chart, column 2) The nominal flow rates indicated by ARGO-HYTOS are based on the following features

- closed by-pass valve at  $v \le 200 \text{ mm}^2/\text{s}$
- element service life > 1000 operating hours at an average fluid contamination of 0,07 g per l/min flow volume
- flow velocity in the connection lines: up to 10 bar  $\leq$  4,5 m/s

#### **Filter fineness**

3 µm(c) ... 12 µm(c)  $\beta$ -values according to ISO 16889 (see Selection Chart, column 4 and diagram Dx)

#### Dirt-holding capacity

Values in g test dust ISO MTD according to ISO 16889 (see Selection Chart, column 5)

#### Filter elements

Flow direction from centre to outside. The star-shaped pleating of the filter material results in:

- large filter surfaces
- low pressure drop
- high dirt holding capacities
- long service life

#### Filter maintenance

By using a clogging indicator the correct moment for maintenance is stated and guarantees the optimum utilization of the filter.

#### Materials:

| Filter head:    | Aluminium alloy                                 |
|-----------------|-------------------------------------------------|
| Filter housing: | Steel (FN 060)                                  |
|                 | Aluminium alloy (FN 300)                        |
| Cover:          | Aluminium alloy                                 |
| Seals:          | NBR (Viton on request)                          |
| Filter media:   | EXAPOR® - inorganic, multi-layer microfibre web |
| Seals:          | NBR (Viton on request)                          |

#### Accessories

Water-absorbing filter elements (EXAPOR® AQUA) are available on request.

For FN 060 a bleeder screw is available on request and with Part no. FNS 060.1720 a fastening kit.

Electrical and/or optical clogging indicators are available on request - optionally with one or two switching points resp. temperature suppression. Dimensions and technical data of the clogging indicators see catalogue sheet 60.30.

#### **Hydraulic fluids**

Mineral oil and biodegradable fluids (HEES and HETG, see info-sheet 00.20)

#### **Temperature range**

• at initial operation:

- 30 °C ... + 100 °C (temporary - 40 °C ... + 120 °C)

#### Viscosity at nominal flow rate

- at operating temperature:  $v < 35 \text{ mm}^2/\text{s}$
- as starting viscosity:  $v_{max} = 1200 \text{ mm}^2/\text{s}$ 
  - The recommended starting viscosity can be read from the diagram D (pressure drop as a function of the kinematic viscosity) as follows: Find the 70%  $\Delta p$  of the cracking pressure of the by-pass valve on the vertical axis. Draw a horizontal line so that it intersects the  $\Delta p$  curve at a point. Read this point on the horizontal axis for the viscosity.

#### Mounting position

Vertical, connection port at the bottom

#### Connection

Threaded ports according to ISO 228 or DIN 13 (FN 060) or flange mounting according to SAE-J518 (FN 300).

Sizes see Selection Chart, column 6 (other port threads on request).

### Diagrams





#### Filter fineness curves in Selection Chart, column 4



The abbreviations represent the following  $\beta\mbox{-values}$  resp. finenesses:

#### For EXAPOR®-Elements:

| 3 E-N | = | $\overline{\beta}_{3(c)}$                        | = 200 | EXAPOR® |
|-------|---|--------------------------------------------------|-------|---------|
| 5 E-N | = | $\bar{\boldsymbol{\beta}}_{5(c)}^{(c)}$          | = 200 | EXAPOR® |
| 12 E  | = | $\overline{\boldsymbol{\beta}}_{12 (c)}^{3 (c)}$ | = 200 | EXAPOR® |

For special applications, finenesses differing from these curves are also available by using special composed filter media.

### **Selection Chart**

|            |         |               | /           | / /        | / /             | /        |         |                  | //       |                 |          |
|------------|---------|---------------|-------------|------------|-----------------|----------|---------|------------------|----------|-----------------|----------|
|            |         |               |             |            | diagr. D        | itty     |         | of by pass       |          | element         |          |
|            |         | 1 FLOW        | dropsee     | UNE NO.    | ssee ing cap    | action   | AIB     | DIESSUIP         | entfilte |                 | ndicator |
| Part NG    | s.<br>M | ominal Pressu | jiagram Fil | rer fine D | Int-holdin cont | IECTIC ( | racking | symbol Replacent | NO.      | Weight Clogging | Remarks  |
|            | l/min   |               |             | g          |                 | bar      |         |                  | kg       |                 |          |
| 1          | 2       | 3             | 4           | 5          | 6               | 7        | 8       | 9                | 10       | 11              | 12       |
| FN 060-273 | 100     | <b>D1</b> /1  | 5 E-N       | 210        | G1              | 3,5      | 1       | V7.1230-53       | 5        | optional        | -        |
|            |         |               |             |            |                 |          |         |                  |          |                 |          |
| FN 300-163 | 170     | <b>D2</b> /1  | 3 E-N       | 710        | SAE 21/2        | 3,5      | 2       | V7.1560-103      | 20       | optional        | *        |
|            |         |               |             |            |                 |          |         |                  |          |                 |          |
| FN 300-153 | 220     | <b>D2</b> /2  | 5 E-N       | 660        | SAE 2½          | 3,5      | 2       | V7.1560-03       | 20       | optional        | *        |
| FN 300-156 | 370     | <b>D2</b> /3  | 12 E        | 350        | SAE 2½          | 3.5      | 2       | V7.1560-06       | 20       | optional        | *        |
|            | 570     |               |             |            | 0712 272        | 575      | -       |                  |          | optional        |          |
|            |         |               |             |            |                 |          |         |                  |          |                 |          |
|            |         |               |             |            |                 |          |         |                  |          |                 |          |
|            |         |               |             |            |                 |          |         |                  |          |                 |          |
|            |         |               |             |            |                 |          |         |                  |          |                 |          |
|            |         |               |             |            |                 |          |         |                  |          |                 |          |
|            |         |               |             |            |                 |          |         |                  |          |                 |          |
|            |         |               |             |            |                 |          |         |                  |          |                 |          |
|            |         |               |             |            |                 |          |         |                  |          |                 |          |
|            |         |               |             |            |                 |          |         |                  |          |                 |          |
|            |         |               |             |            |                 |          |         |                  |          |                 |          |
|            |         |               |             |            |                 |          |         |                  |          |                 |          |
|            |         |               |             |            |                 |          |         |                  |          |                 |          |
|            |         |               |             |            |                 |          |         |                  |          |                 |          |
|            |         |               |             |            |                 |          |         |                  |          |                 |          |

Optical or electrical indicators are available to monitor the clogging condition of the element.

For the appropriate clogging indicators see catalogue sheet 60.20.

#### **Remarks:**

- The response/switching pressure of the clogging indicator used must be lower than the cracking pressure of the by-pass valve (see Selection Chart, column 7).
- The clogging indicators are optional and always delivered detached from the filter.
- The filters listed in this chart are standard filters. If modifications are required, e. g. with water-absorbing filter elements or fastening kit, we kindly ask for your request.

### Dimensions



| Μ        | leasu     | rem | ent | S   |     |     |    |    |    |    |      |     |      |       |     |      |     |     |    |
|----------|-----------|-----|-----|-----|-----|-----|----|----|----|----|------|-----|------|-------|-----|------|-----|-----|----|
| <b>T</b> | A / D     | 6   | 5   | F   | r   | 6   |    |    | 14 |    |      | N   | 0    |       | P   | 6    | Ŧ   |     |    |
| туре     | A/B       | Ľ   | D   | E   | F   | G   | н  | I  | К  | L  | IVI  | N   | 0    | Р     | к   | 2    | 1   | U   | v  |
| FN 060   | G1        | 410 | 138 | 63  | 136 | 170 | 95 | 66 | 9  | 12 | 56 5 | 177 | 78   | 95    | 300 | 23   | 4   | 34  | 21 |
| FN 300   | SAE 21/2  | 775 | 160 | 126 | 200 | 231 | 45 | 96 | 25 | 40 | 50,8 | 195 | 97,5 | 112,5 | 700 | 88,9 | 170 | 165 | 63 |
|          | 0, 12 2,2 |     |     |     | 200 | 20. |    | 50 | 20 |    | 50,0 |     | 3773 |       |     | 00/0 |     |     | 00 |

### Symbols



### **Spare Parts**



| Pos. | Designation                             | Part No.         |
|------|-----------------------------------------|------------------|
| 1    | Automatic ventilation valve (FN 300)    | FA 016.1801      |
| 2a   | Cover (FN 060)                          | FNA 008.1290     |
| 2b   | Cover (FN 300)                          | FNA 045.1210     |
|      | (with automatic ventilation valve       |                  |
|      | and Pos. 3b)                            |                  |
| 3a   | O-ring 117,48 x 5,3 (FN 060)            | N007.1175        |
| 3b   | O-ring 145,42 x 5,33 (FN 300)           | N007.1455        |
| 4    | Filter element                          | see Chart/col. 9 |
| 5    | Bonded seal 4,1 x 7,2 x 1               | 3404074          |
| 6    | Hexagonal head screw M4x8<br>DIN 933-88 | 3301051          |

The function of the complete filters as well as the outstanding features of the filter elements assured by ARGO-HYTOS can only be guaranteed if original ARGO-HYTOS spare parts are used.

### **Quality Assurance**

#### Quality management according to DIN EN ISO 9001

To ensure constant quality in production and operation, ARGO-HYTOS filter elements undergo strict controls and tests according to the following DIN and ISO standards:

| DIN ISO 2941 | Verification of collapse/burst resistance          |
|--------------|----------------------------------------------------|
| DIN ISO 2943 | Verification of material compatibility with fluids |
| DIN ISO 3724 | Verification of flow fatigue characteristics       |

| ISO | 2942  |
|-----|-------|
| ISO | 3968  |
| ISO | 16889 |

Verification of fabrication integrity (Bubble Point Test) Evaluation of pressure drop versus flow characteristics Multi-Pass-Test (evaluation of filter fineness and dirt-holding capacity)

Various quality controls during the production process guarantee the leakfree function and solidity of our filters.

Our engineers will be glad to advice you in questions concerning filter application, selection as well as the cleanliness class of the filtered medium attainable under practical operating conditions.

Illustrations may sometimes differ from the original. ARGO-HYTOS is not responsible for any unintentional mistake in this specification sheet.



We produce fluid power solutions ARGO-HYTOS GMBH · Industriestraße 9 · D-76703 Kraichtal Tel: +49 7250 76-0 · Fax: +49 7250 76-199 · info.de@argo-hytos.com · www.argo-hytos.com





## Filter Cooling Units



# FNK 050 · FNK 100

- Operating pressure up to 10 bar
- Nominal flow rate up to 125 l/min
- Cooling capacity up to 45 kW

### Description

#### Application

Return-flow or off-line filter in hydraulic systems with water cooling.

#### General

High power densities in modern hydraulic systems require on one hand excellent cleanliness classes of the oil and on the other hand powerful cooling systems. The ARGO-HYTOS filter cooling unit FNK meets both demands on smallest installation space.

#### **Performance features**

Protection

| against wear: | By means of filter elements that meet even the the highest demands regarding cleanliness classes. |
|---------------|---------------------------------------------------------------------------------------------------|
|               |                                                                                                   |

Cooling: Efficient discharge of large heat flow volumes by means of a powerful cooler.

#### Assembly and operating mode

Oil that has to be cooled is first cleaned over a fine filter element and then flows – through a check-valve and the high-performance tubular cooler – in cooled-down condition into the tank.

Monitoring of filter clogging is effected by an optionally available differential pressure indicator. The integrated by-pass valve protects the filter element in cold start against increasing diffential pressures.

#### Special design features

By combination of fine filter and cooler in one unit the necessary space is considerably reduced compared to conventional solutions. This also results in less assembling and piping.

The filter element is hooked to the cover and is pulled upwards when it has to be changed. Because of the cover design the filter element can be changed almost without losing any oil.

An integrated check valve prevents draining of oil from the tank when assembling the filter cooling unit below the oil level.

With maintenance work at the cooler it simply can be removed from the housing after removing the water connections.

#### Filter elements

Flow direction from outside to centre. The star-shaped pleating of the filter results in:

- large filter surfaces
- low pressure drop
- high dirt holding capacities
- long service life

#### Filter maintenance

By using a clogging indicator the correct moment for maintenance is stated and guarantees the optimum utilization of the filter.

The cooler is maintenance-free up to a large extent.

Unfavourable water qualities (e.g. high water hardness and PH-value) and high temperatures may lead to sediments in the water pipes and/or the cooler surface. The water quality therefore has to be controlled regularly and if necessary improved.

For cleaning of the water pipes the cover of the cooler can be removed. The maintenance instructions give detailed information on the maintenance of the cooler.

#### Materials:

| Filter housing FNK 050: | GG, Filter head: Steel                                             |
|-------------------------|--------------------------------------------------------------------|
| Filter housing FNK 100: | Aluminum alloy                                                     |
| Filter cover:           | GG                                                                 |
| Cooler cover:           | GG                                                                 |
| Cooler catalyst tube:   | Steel                                                              |
| Seals:                  | NBR (Viton on request)                                             |
| Filter media:           | $EXAPOR^{\circledast}-\text{inorganic multi-layer microfibre web}$ |

#### Accessories

Electrical and optical clogging indicators are available. Dimensions and technical data see catalogue sheet 60.30.

### Characteristics

**Operating pressure** Max. 10 bar

### Cooling capacity

Up to 45 kW

#### Nominal flow rate

Up to 125 l/min (see Selection Chart, column 3)

#### **Filter fineness**

5 μm (c) β-values according to ISO 16889 (see Selection Chart, column 5 and Diagram Dx)

#### Dirt-holding capacity

Values in g, test dust ISO MTD according to ISO 16889 (see Selection Chart, column 6)

#### Hydraulic fluids

Mineral oil and biodegradable fluids (HEES and HETG, see info-sheet 00.20)

### Temperature range of fluids

-30 °C ... +100 °C (temporary -40 °C ... +120 °C)

### Mounting position

Filter preferably vertical and/or cooler horizontal

#### Connection

Threaded ports according to ISO 228 or DIN 13. Sizes see Selection Chart, column 7.

### Selection Recommendations

In principle the filter cooling unit is selected as follows:

#### 1. Selection of the filter cooling unit according to the cooling performance chart

The displayed performance curves are based on:

- Ratio flow rate water/oil 2:1
- Water inlet temperature 25 °C
- Oil discharge temperature 50 °C
- Oil viscosity 35 mm<sup>2</sup>/s

For differing viscosity the correction factor A can be read off from the viscosity correction chart on the right hand.

With deviating oil discharge and/or oil entry temperatures and viscosities please calculate as shown in the following example:

#### Given

| Heat to be discharged (AW)                       | = | 17 kW     |
|--------------------------------------------------|---|-----------|
| Oil flow (Q)                                     | = | 80 l/min  |
| Oil discharge temperature(T <sub>oil out</sub> ) | = | 45 °C     |
| Water entry temperature (T <sub>water in</sub> ) | = | 25 °C     |
| Oil species                                      | = | ISO VG 32 |
|                                                  |   |           |

#### Procedure

- 1.1. Calculation of the temperature difference  $\Delta T$ Temperature difference  $\Delta T$  (°C) = (AW x 34, 1) / Q = 7,2
- 1.2. Calculation of the middle oil temperature 49 °C  $(2 \times T_{oilout} + \Delta T) / 2 \cong$
- 1.3. Calculation of the viscosity with middle oil temperature  $v_{ist}$  $v_{irt}$  from the oil manufacturer chart for ISO VG 32 at 49 °C: 21 mm<sup>2</sup>/s
- 1.4. Viscosity factor "A" From the viscosity correction chart "A" at 21 mm<sup>2</sup>/s: 0,88
- 1.5. Determination of the necessary cooling performance Heat to be discharged  $AW_{eff.} = (AW \times 27, 5 \times A) / (T_{oil out} - T_{water in})$ = (17 x 27,5 x 0,88) / 20 = 20,6 kW
- 1.6. Selection of the filter cooling unit The cooler performance chart shows Q = 80 l/min and AW<sub>eff.</sub> 20,6 kW the filter cooling unit: FNK 100-3153

#### 2. Controlling pressure drop

To determine the pressure drop it is possible to interpolate within the given set of curves in the diagrams D1.1-D2.3 between 35 mm<sup>2</sup>/s and 300 mm<sup>2</sup>/s.

Finally it has to be checked, if there is enough operating pressure for the determined pressure drop of the filter cooling units.

In case the pressure drop of the selected filter cooling unit should be too high, on the basis of the pressure drop curves an adequate version has to be chosen. If necessary the cooling performance has to be verified again.

With volume flows over 100 l/min and operating viscosities from 200 mm<sup>2</sup>/s on (e.g. at cold start) the by-pass valve can be open with a partially contaminated filter element (temporary poor filtration performance).



For determination of the correction factor "A" with oil viscosities differing

Viscosity correction chart

4



Oil viscosity 21 mm<sup>2</sup>/s

### Characteristic curves cooler performance



### Diagrams

#### $\Delta p\text{-curves}$ for complete filters in Selection Chart, column 4



In general the pressure drop increases in line with a larger cooler length. Exception:

Due to lower distances of the disk sheets in the cooler the pressure drop of the FNK 050-1153 is higher than the one of the larger FNK 050-2153.

#### Filter fineness curves in Selection Chart, column 4



Due to lower distances of the disk sheets in the cooler the pressure drop of the FNK 100-3153 is higher than the one of the larger FNK 100-5153.

The abbreviations represent the following  $\beta-\text{values}$  resp. finenesses:

#### For EXAPOR®-Elements:

| 3 E-N | = | $\overline{\beta}_{3(c)}$  | = 200 | <b>EXAPOR</b> ® |
|-------|---|----------------------------|-------|-----------------|
| 5 E-N | = | $\bar{\beta}_{5(c)}$       | = 200 | <b>EXAPOR</b> ® |
| 12 E  | = | $\overline{\beta}_{12}(c)$ | = 200 | EXAPOR®         |

For special applications, finenesses differing from these curves are also available by using special composed filter media.

## Selection Chart

|                                                                                                                                                                                                                                                                                                                                        | ,                                                                                                                                                                                                                                                                                                                                                                                           |          |                | . /         |            | /            | /        | //                    |               | /        | / / /         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|-------------|------------|--------------|----------|-----------------------|---------------|----------|---------------|
|                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                             |          | acity          | / /         | /          | 5:201.D      | •        | inlet f               | ov-pass       |          |               |
|                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                             | di       | Ing cape       | 00 5ee      | 5          | see Dias car | pacity   | A 1 A 2 MIL OSSURE OF | ot filter NO. | dicato   | or cont       |
| * NC                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                             | minalcou | minalflow      | dron        | in finenes | holding      | onection | king pre-laceme       | nent Part     | ing inc. | nht plereleme |
| Parr                                                                                                                                                                                                                                                                                                                                   | N                                                                                                                                                                                                                                                                                                                                                                                           | JU. M    | DIVI. Press di | ,89. Filte  | e. Dir     |              |          | isc. Beb. Eler        | 11 Clog       | We       | 19 Coor.      |
|                                                                                                                                                                                                                                                                                                                                        | kW                                                                                                                                                                                                                                                                                                                                                                                          | l/min    |                |             | g          |              | bar      |                       |               | kg       |               |
| 1                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                           | 3        | 4              | 5           | 6          | 7            | 8        | 9                     | 10            | 11       | 12            |
| FNK 050-1153                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                           | /5       | D1.1           | 5 E-N       | 230        | G 1 1/4      | 5,0      | V7.1235-53            | optional      | 23       | FNK 050.1700  |
| FINK 050-2153                                                                                                                                                                                                                                                                                                                          | 12                                                                                                                                                                                                                                                                                                                                                                                          | 75       | D1.2           |             | 230        | G 1 1/4      | 5,0      | V7.1235-53            | optional      | 24       | FINK 050.1710 |
| 1110-3133                                                                                                                                                                                                                                                                                                                              | 15                                                                                                                                                                                                                                                                                                                                                                                          | 75       | 01.5           | J L-IN      | 230        | G 174        | 5,0      | V7.125J-J5            | υρτισπαι      | 20       | TINK 050.1720 |
|                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                             |          |                |             |            |              |          |                       |               |          |               |
| FNK 100-3153                                                                                                                                                                                                                                                                                                                           | 33                                                                                                                                                                                                                                                                                                                                                                                          | 125      | D2.1           | 5 E-N       | 230        | G 1¼         | 5,0      | V7.1235-53            | optional      | 15       | FNK 100.0703  |
| FNK 100-5153                                                                                                                                                                                                                                                                                                                           | 40                                                                                                                                                                                                                                                                                                                                                                                          | 125      | D2.2           | 5 E-N       | 230        | G 1¼         | 5,0      | V7.1235-53            | optional      | 16       | FNK 100.0705  |
| FNK 100-6153                                                                                                                                                                                                                                                                                                                           | 50                                                                                                                                                                                                                                                                                                                                                                                          | 125      | D2.3           | 5 E-N       | 230        | G 1¼         | 5,0      | V7.1235-53            | optional      | 17       | FNK 100.0706  |
|                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                             |          |                |             |            |              |          |                       |               |          |               |
|                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                             |          |                |             |            |              |          |                       |               |          |               |
|                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                             |          |                |             |            |              |          |                       |               |          |               |
|                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                             |          |                |             |            |              |          |                       |               |          |               |
|                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                             |          |                |             |            |              |          |                       |               |          |               |
|                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                             |          |                |             |            |              |          |                       |               |          |               |
|                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                             |          |                |             |            |              |          |                       |               |          |               |
|                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                             |          |                |             |            |              |          |                       |               |          |               |
|                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                             |          |                |             |            |              |          |                       |               |          |               |
|                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                             |          |                |             |            |              |          |                       |               |          |               |
|                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                             |          |                |             |            |              |          |                       |               |          |               |
|                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                             |          |                |             |            |              |          |                       |               |          |               |
|                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                             |          |                |             |            |              |          |                       |               |          |               |
|                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                             |          |                |             |            |              |          |                       |               |          |               |
|                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                             |          |                |             |            |              |          |                       |               |          |               |
|                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                             |          |                |             |            |              |          |                       |               |          |               |
|                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                             |          |                |             |            |              |          |                       |               |          |               |
|                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                             |          |                |             |            |              |          |                       |               |          |               |
|                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                             |          |                |             |            |              |          |                       |               |          |               |
|                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                             |          |                |             |            |              |          |                       |               |          |               |
| the abbreviation<br>utilization we rea                                                                                                                                                                                                                                                                                                 | Optical or electrical clogging indicators are available to monitor the clogging condition of the element. If the indicator should be already mounted use the abbreviation "M" behind the part number of the indicator. The printed order acknowledgements show both items separately. For optimal element utilization we recommend clogging indicators with a start-up pressure of 2.5 bar. |          |                |             |            |              |          |                       |               |          |               |
| Order example                                                                                                                                                                                                                                                                                                                          | e: The filt                                                                                                                                                                                                                                                                                                                                                                                 | ter FNK  | 100-3153 ha    | as to be su | upplied    | with elec    | trical o | logging indica        | ator – respo  | nse pres | sure 2,0 bar. |
| Order descript                                                                                                                                                                                                                                                                                                                         | ion:                                                                                                                                                                                                                                                                                                                                                                                        |          | FI             | NK 100-31   | 53         | / DG         | 041-3    | 2 M                   |               |          |               |
| Part No. (Basic unit) — Mounted                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                             |          |                |             |            |              |          |                       |               |          |               |
| Clogging indic                                                                                                                                                                                                                                                                                                                         | Clogging indicator                                                                                                                                                                                                                                                                                                                                                                          |          |                |             |            |              |          |                       |               |          |               |
| For the appropriate clogging indicator see catalogue sheet 60.30.                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                             |          |                |             |            |              |          |                       |               |          |               |
| <ul> <li>Remarks:</li> <li>The response/switching pressure of the clogging indicator used must be lower than the cracking pressure of the by-pass valve (see Selection Chart, column 10).</li> <li>The filter units listed in this chart are standard units. If modifications are required, we kindly ask for your request.</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                             |          |                |             |            |              |          |                       |               |          |               |

### Dimensions



### Measurements

| Туре         | $A_1 / A_2$ | E   | F   | G   | н  | Х   |  |  |
|--------------|-------------|-----|-----|-----|----|-----|--|--|
| FNK 050-1153 | G 1¼        | 133 | 152 | 105 | 65 | 203 |  |  |
| FNK 050-2153 | G 1¼        | 133 | 152 | 105 | 65 | 203 |  |  |
| FNK 050-3153 | G 1¼        | 133 | 152 | 105 | 65 | 457 |  |  |
| FNK 100-3153 | G 1¼        | 145 | -   | 127 | 88 | 330 |  |  |
| FNK 100-5153 | G 1¼        | 145 | -   | 127 | 88 | 480 |  |  |
| FNK 100-6153 | G 1¼        | 145 | -   | 127 | 88 | 785 |  |  |

### Symbols



### **Spare Parts**



| Pos. | Designation                     | Part No.            |
|------|---------------------------------|---------------------|
| 1    | Cover complete (with pos. 2)    | FNK 100.1210        |
| 2    | O-ring                          | N007.1245           |
| 3    | Filter element                  | V7.1253-53 K27      |
| 4    | Flat seal                       | FNK 100.0110        |
| 5    | Cooler (with water supply cover | s. chart / column12 |
|      | and seal)                       |                     |

The functions of the complete filters as well as the outstanding features of the filter elements assured by ARGO-HYTOS can only be guaranteed if original ARGO-HYTOS spare parts are used.

### **Quality Assurance**

#### Quality management according to DIN EN ISO 9001

To ensure constant quality in production and operation, ARGO-HYTOS filter elements undergo strict controls and tests according to the following DIN and ISO standards:

| DIN ISO 2941 | Verification of collapse/burst resistance          |
|--------------|----------------------------------------------------|
| DIN ISO 2943 | Verification of material compatibility with fluids |
| DIN ISO 3724 | Verification of flow fatigue characteristics       |

ISO 2942 ISO 3968 ISO 16889 Verification of fabrication integrity (Bubble Point Test) Evaluation of pressure drop versus flow characteristics Multi-Pass-Test (evaluation of filter fineness and dirt-holding capacity)

Various quality controls during the production process guarantee the leakfree function and solidity of our filters.

Our engineers will be glad to advice you in questions concerning filter application, selection as well as the cleanliness class of the filtered medium attainable under practical operating conditions.

Illustrations may sometimes differ from the original. ARGO-HYTOS is not responsible for any unintentional mistake in this specification sheet.



**We produce fluid power solutions** ARGO-HYTOS GMBH · Industriestraße 9 · D-76703 Kraichtal Tel: +49 7250 76-0 · Fax: +49 7250 76-199 · info.de@argo-hytos.com · www.argo-hytos.com